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SUMMARY 
Simulation of the dissolution of an active corrosion pit in the presence of fluid flow was carried out with the 
use of finite element techniques. The model included multiple species in solution, reactian equilibria and 
transport by diffusion, convection and migration. The mathematical model was used to examine the effect of 
fluid flow on the pitting of nickel in neutral chloride solution. The pit dissolution rate was found to decrease 
with increasing flow owing to potential field effects. The capabilities demonstrated in this paper represent a 
significant advancement in the modelling of pitting corrosion phenomena. 
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INTRODUCTION 

The local environment within active corrosion pits is different to that of the external bulk solution 
owing to transport and reaction phenomena which lead to accumulation or depletion of species 
inside the pit. Fluid flow can influence pitting corrosion by altering the local composition within 
the pit. Characterization of the local pit electrolyte is essential to an understanding of pitting, since 
it is the local environment which determines the growth rate and stability of the pit. The objective 
of the present study was to develop a mathematical model to simulate conditions within an active 
corrosion pit and provide a vehicle for quantitative testing of mechanistic hypotheses. 

THEORETICAL MODEL 

The corrosion pit under consideration is an axisymmetric dissolving cavity on a metal surface 
which, except for the cavity, is flat and in a passive or  non-reactive state. The metal is at constant 
potential with respect to a reference point far away from the surface. The cavity dissolves as metal 
ions are transferred from €he solid phase to the aqueous solution, resulting in a local increase in 
concentration of positively charged metal ions. There is a simultaneous build-up of negatively 
charged ions inside the cavity in order to balance the electrical charge. The metal ions are 
transported out of the pit interior by diffusion, migration and convection. They may also react 
with other ions in solution to form additional species. These reactions are usually fast and are 
considered to be in equilibrium. The dissolving cavity is a moving boundary problem which may 
be considered to be at quasi-steady state owing to the fact that the characteristic time for the 
boundary movement is greater than the time necessary for the transport processes to reach steady 
state. 
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The specific system chosen for study was the pitting of nickel in sodium chloride solution at 
neutral pH. Nickel dissolves into solution as Ni+2.' Once in solution, the nickel ion can further 
react to form chloride complexes according to the following  reaction^:^.^ 

Ni+2 +C1- = N U + ,  (1) 

Ni+, +2C1- =NiC12. (2) 

The nickel ion also undergoes hydrolysis. The extent of hydrolysis at neutral pH, however, is not 
enough to cause precipitation of solid hydrolysis  product^.^, Hydrolysis products can therefore 
be neglected because of their very low concentration and the fact that no precipitation occurs. 

1 NiCl' 4 Cl-. 
2 NiCl, 5 Na' 
3 Ni+2 6 4. 

The species included in the model are numbered for convenience as shown below: 

Species 6 is the electrostatic potential whose gradient is the negative of the electric field. The 
partial differential equations resulting from the individual species balances are 

-V* NI-V. N2-V. N3=0, (3) 

- V .  N1-2V. N2-V. N4=0, (4) 

( 5 )  

Ni= -DiVci-zi F u ~ c ~ V ~ + V C ~ .  (6) 

- V . N, = 0, 

where Ni is the flux of species i defined as 

The three terms in the flux equation represent transport by diffusion, migration and convection 
respectively. The migration term, unique to electrochemical systems, describes the movement of 
charged species in response to the electric field. Only solvent (waterkion interactions are 
considered. Physical parameters were assumed to be constant. Species continuity equations for the 
hydrogen and hydroxide ions were not included, since these two species are essentially decoupled 
from the rest of the species in solution owing to their very low concentration. Equations (3) and (4) 
are balances on species containing Ni and C1 respectively and were obtained by eliminating the 
reaction rate terms from the individual species balance equations. The reaction equilibria 
expressed in equations (1) and (2) provide two additional relations: 

Ki = C i / C 3  Cq, (7) 

K 2  = c 2 / c 3  c;. (8) 
The set of equations is closed with the electroneutrality equation 

c zici = 0, 
i 

(9) 

where zi is the charge on species i. Equation (9) is an implicit equation for the electrostatic 
potential which requires that the net charge of the solution be equal to zero. 

The domain of interest is shown in Figure 1. Distances have been normalized with respect to the 
radius of the cavity opening (r,,). The cavity itself is a spherical section with a characteristic angle 
of 69" (Figure 1) chosen to approximate the shape of experimentally observed pits in 1 M NaCl.' 
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Figure 1 .  Solution domain for axisymmetric cavity. Distances have been normalized with respect to the radius of the 
cavity opening 

The left boundary is the axis of symmetry at  which the following conditions apply: 

N ,  * n + N ,  - n + N ,  - n = 0, 

N ,  *n+2N, . n +  N 4 .  n=O, 

N5 * n = 0. (12) 

These same boundary conditions also apply at the lower boundary (excluding the cavity surface). 
Conditions ( 1  1 )  and (12) are valid at the cavity surface, where condition (10) is replaced by 

( 1  3) N ,  - n + N ,  - n + N, * n =- exp [/?(4,- 4)].  

The exponential expression describes the dissolution of nickel as a function of the potential and is 
commonly referred to as a Tafel relation. The boundary conditions at the outside boundary are 

io 
2F 

c1=c2=c3=o,  c4 = c4, bulk? 

4 =o, ' 5  = c S ,  bulk' 

In other words, the concentrations at the outside boundary were set equal to bulk conditions. The 
outside boundary was placed a sufficient distance from the cavity so as not to distort the 
concentration profiles in the cavity region (within five radii of the cavity centre). An additional 
correction was necessary for the electrical potential. The potential drop from the outside 
boundary to infinity was significant and was accounted for by use of an analytical expression. The 
reason for the round shape of the outside boundary was to approximate the shape of a constant 
potential line. The absolute value of the potential is arbitrary and was set equal to zero at the 
outside boundary. The equilibrium relations and the electroneutrality equation apply at all 
boundaries. 
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The above equations and boundary conditions which describe the concentration and potential 
fields were made dimensionless prior to numerical solution (see Reference 5). An important 
parameter which appears in the dimensionless equations is the Peclet number defined as 

Pe = uoro/Dl .  (1 5 )  

In physical terms the Peclet number is the ratio of convective transport to transport by diffusion.6 

FLUID FLOW 

In order to preserve the symmetry of the problem, the cavity was subjected to flow from an 
axisymmetric jet whose axis was coincident with that of the cavity. The size of the jet was large 
with respect to the small cavities of interest (radius of cavity opening: 30-40 pm). Viscous forces 
dominate in the region of interest owing to the small size of the cavities. Therefore, the Stokes 
equations adequately describe the flow field near the cavity. The equations are independent of the 
concentration field and may be solved directly to obtain the hydrodynamic field. Because the 
equations are linear in velocity, the calculated velocity field can be scaled to any velocity for which 
the Stokes assumption is valid. 

The flow equations were also solved in their dimensionless form. The characteristic velocity was 
that at the top of the domain (R =0, Z = 8). With respect to Figure 1, the boundary conditions used 
are 

d V,/dn = 0 left-hand boundary, 
V, = 0 lower boundary, 
V, = Vhz outer boundary, 
V, = 0 
V ,  = Vh, outer boundary. 

left and lower boundaries, 

Vhr and Vhn were approximated at each point along the outer boundary by expanding the 
similarity solution for the laminar boundary layer of an infinite axisymmetric jet impinging on a 
flat plate, and keeping the first non-zero term of the series.’ The resulting expressions for the 
velocities near the wall are 

Vhr = ARZ, Vh= -AZZ, (17) 
where A is a constant. 

METHOD OF SOLUTION 

The FIDAP Analysis Package was used to solve the fluid flow equatiom8 The package uses the 
Galerkin formulation of the finite element method to solve a variety of fluid dynamics and 
convective heat transport problems. 

In order to solve for the concentration and potential fields, the Galerkin procedure was applied 
to equations ( 3 ) 4 5 )  to yield the discrete equations of the form 
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where 

H =  rTV-vr dv,  I 
I Gi = DiVrTVr d V, 

pi = zi I;  uicivrTvr  dv, I 
dS. 

The summations are over the species included in the particular equation (see equations (3H5) 
above). The discrete forms of the equilibrium relations (7) and (8) are 

K3ECI -B4C3 =O, K4EC2 - B4Cl =O, (19) 
where 

E= r T r d v ,  

B ~ =  c i r T r d v ,  

I 
s. 

K3=1/K1,  K4=K1/K2. 

Finally, the electroneutrality equation can be written as 

C ziECi = 0. 
all i 

The FIDAP code was modified to solve the above set of discrete equations which describe the 
concentration and potential fields. Additional modifications were required to apply the boundary 
condition (13). The details of the modifications can be found in Reference 5. A Newton-Raphson 
iteration procedure was used to solve the highly non-linear system. 

Nine-noded quadratic elements of isoparametric form were used in a finite element mesh of 139 
quadrilateral elements and 601 nodes. The mesh was designed to optimize the solution of the mass 
transport problem, since solution of the Stokes equations for the flow field presented no difficulty. 
All simulations were carried out on an IBM mainframe (3081-GX) using 4 Mbyte virtual memory. 

RESULTS AND DISCUSSION 

Fluid pow calculations 

Figure 2 shows the velocity field where the length of each vector is proportional to the 
magnitude of the velocity at that point. The flow velocity decreased rapidly as it approached the 
wall. Velocities in the cavity were approximately five orders of magnitude smaller than those at 
the top of the domain. Flow field calculations required approximately 11.4 CPU seconds. 

It should be noted that the normal velocity was completely specified over the entire boundary of 
the domain. Under such conditions, the specified boundary conditions must satisfy the discrete 
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Figure 2. Velocity vector plot for Stokes flow in the cavity region. The vector length is proportional to the magnitude of 
the velocity at that point 

mass balance or the problem is ill-posed, the algebraic system will be inconsistent and no solution 
is possible.’ If the global mass balance is satisfied, then the pressure can be determined to an 
arbitrary additive constant. Apparently the analytical solution (equation (17)) applied at the 
boundary was interpolated exactly by the quadratic basis functions and thus satisfied the discrete 
mass balance. This observation is supported by the fact that solution of the flow field both with the 
use of a penalty method and with discretized pressure gave equivalent answers. 

Pitting simulations 

Figure 3(a) shows concentration contours for Ni+2 resulting from the dissolution of nickel in 
1 M NaCl under no-flow conditions. It is evident that the concentration variations extend well 
beyond the pit mouth. Thus, transport resistance outside the cavity was an important part of the 
total transport resistance. 

The effect of flow on the concentration field is seen in Figures 3(b) and 3(c) which show iso- 
concentration lines for Ni” at different flow rates as characterized by Peclet numbers of 10 and 
500. An increase in Peclet number corresponds either to an increase in velocity or an increase in 
the size of the cavity. Fluid flow limited concentration variations to the region close to the lower 
boundary of the domain. However, no penetration of the mass transfer boundary layer into the 
cavity was observed. Figure 4 shows the variation of all species from the bottom of the pit outward 
along the axis of symmetry for a Peclet number of 10. The concentration of Ni species represents 
the sum of species 1,2 and 3. The concentrations reached their bulk values within about four radii 
from the pit mouth. The potential, however, continued to drop slowly throughout the domain. A 
pitting simulation required approximately 70@-1200 s to converge, depending on the particular 
conditions of the run. 

Figure 5 shows the variation of the local dissolution rate (dimensionless) along the surface of the 
cavity at two values of Pe for bulk concentrations of 1.0 M NaCl and 0.25 M NaC1. Dissolution 
rates for the 0.25 M solution were about 40% lower than for the 1.0 M solution owing to the 
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Figure 3. Ni” iso-concentration lines for nickel dissolution in 1 M NaCl at (a) Pe=O (no flow), (b) Pe=lO and 
(c) Pe=500. Contour legend a, 0.2 M; b, 0.4; c, 0.6; d, 0.8; e, 1.0 

higher conductivity of the more concentrated solution. For each bulk concentration the 
dissolution rate was found to decrease with increasing Peclet number. The decrease was slightly 
more pronounced for the 0 2 5  M NaCl solution than for the 1 M NaCl solution. Convective flow 
caused the electrolyte solution inside the domain (Figure 1) to become more like the bulk solution. 
Thus, the concentration of ions in the region surrounding the pit was less in the presence of flow 
than under no-flow conditions. The decrease in ion concentration increased the resistivity of the 
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Figure 4. Variation of concentration and potential along the z-axis for Pe=  10, 1 M NaCl 
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Figure 5. Variation of the local dissolution rate along the cavity surface (bottom, 0"; corner, 69"). 1.0 M NaCI:O, Pe =O; 
0,  Pe=500.0.25 M NaCI: A, P e = O  A, Pe=500 

solution in the cavity region. The increased resistance resulted in a greater potential drop in 
solution which decreased the percentage of the total applied potential available to drive the 
surface reaction. Since the total applied potential was constant for all runs, the result of increased 
flow was a lower dissolution rate as seen in Figure 5. A decrease in pit dissolution rate with 
increasing flow because of potential effects has also been observed e~perimentally.~, lo  

CONCLUSIONS 

The commercial finite element code FIDAP has been modified in order to solve a new set of 
equations which include multide species in solution, transport by migration and reaction 



DISSOLUTION OF CORROSION PITS 1521 

equilibria. The modified code was used to simulate the potential-dependent pitting of nickel in 
neutral salt solution. It was found that convective flow from an axisymmetric jet limited 
concentration variations to the region near the cavity. The flow, however, was not sufficient to 
cause the mass transfer boundary layer to penetrate the cavity mouth. The dissolution rate of the 
cavity decreased with increasing flow owing to an increase in the potential drop as the 
concentration of ions in the region surrounding the pit approached that of the bulk solution. The 
capabilities demonstrated in this paper represent a significant advancement in the modelling of 
pitting phenomena and a powerful tool for continuing research. 
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APPENDIX: NOMENCLATURE 

concentration (gmol/cm3) 
vector of nodal point concentrations (gmol/cm3) 
diffusivity (cm2 s - ’ )  
Faraday’s constant (96500 C/eq) 
species number 
exchange current density (A cm-2) 
equilibrium constant 
molar flux (gmol/s cm’) 
normal vector 
Peclet number, u,r,/D (dimensionless) 
radius of pit opening (cm) 
dimensionless distance, r/ro 
absolute temperature (K) 
ionic mobility (cm2 gmol/J s) 
characteristic velocity of cavity (cm s - l )  
velocity (cm s - ’ ) 
dimensionless velocity, v/uo 
dimensionless velocity at outer boundary 
dimensionless distance, z / ro  
charge number (eqlgmol) 

Greek letters 

P Tafel parameter (V-’) 
4 potential in solution (V)  
4) 
r finite element shape functions 

vector of nodal point potentials (V)  
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